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The direct simulation Monte Carlo {DSMC) algorithm, introduced
in 1976 by G. A. Bird, proves to be extremely efficient for simulating
dilute gas flows. However, due to the relatively large transport coef-
ficients at low densities, a high Rayleigh or Reynolds number is
difficult to achieve by this technigue. We present a modified version
of DSMC in which the relaxation processes are anhanced and the
transport coefficients reduced. This is achieved by increasing the
ratio between collisions and free flow of particles in a suitable way.
The maodified algorithm is mostly useful for statistical physics appli-
cations, since it leads to the correct fluctuation spectrum. Several
computational experiments are described; they demonstrate that
the correct equilibrium and nonequilibrium fluid properties are pre-
served. The new algorithm is shown to be significantly more effi-
cient than molecular dynamics for simulating complex hydrody-
namical flows. ® 1995 Academic Press, Inc.

1. INTRODUCTION

With the development of high speed computers, much atten-
tien has been focused in the past decade on the microscopic
simulation ol non-cquilibriom hydrodynamic systems | 1, 2, 3],
For example, complex phenomena such as shock waves 4],
flow past an obstacie {51, and hydrodynamic insiabilities 16, 7§
have been successfully simufated throvgh molecular dynamic
(MD} simulations. The next challenge is obviously the micro-
scopic simulation of high Reynolds number flows, a domain
where the wealth of theoretical speculations contrasts with the

difficulties in obtaining precise experimental results |8]. Unfor-
* tunately, traditional MD simulation of high Reynolds number
fiows still seems beyond (he reach of present day computers,

One approach to overcome this difficulty is to simplify as
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nmuch as possible the underlying microscopic dynamics and,
possibly, to reduce the dimension of the embedding space. A
well-known example is the hard disk fluid that has been used
for the simulation of two-dimensional Rayleigh—Bénard insta-
bilities |6, 7}. Recently, Rayleigh numbers as high as 80,000
have been reported in simulations of 50,000 hard disks [9]. In
these systems, a secondary bifurcation that leads to periodic
behavior of convective rolls has been observed. A single run
of such a simulation requires about 15 days of CPU time on
an IBM 3090 supercomputer. A rough estimate shows that
reaching the turbulence regime would require about 10 times
more particles and over six months of CPU time.

Another possibility is to consider dilute systems in the Boltz-
mann limit since there exist efficient algorithms, like the Bird
algorithm [10], usually referred to as DSMC (direct simulation
Monte Carlo), which are typically three orders of magnitude
faster than comparable MD simulations. In this case, however,
one has to face two new difficulties.

First, one is typically interested in simulating strictly sub-
somic Tows. Tor otherwise (he shock waves generated in the
system make the analysis and the theoretical interpretation of
the resulls extremely difficult. The Reynolds number is propor-
tional to the mean flow velocity and it is therefore limited by
the value of the sound speed. Since the latter is about three
times smaller in dilute gases than in liquids, the maximum
possible value of the Reynolds number in subsonic flows re-
mains also about three times smaller in dilute gases and there
seems to be no way fo increase this ratio.

A second and perhaps more serious difficulty arises from
the fact that the transport coefficients of dilute gases are signifi-
cantly larger than those of dense fluids. This is shown in Fig,
I, where the density dependence of the kinematic viscosity »
of hard sphere Nuids is depicted. The shape and the order of
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FIG. 1. Kinematic viscosity versus number density. The solid lire corre-
sponds to hard sphere Enskog gas, whereas the dashed line represents the
Boltzmann values extrapolated to high densities (cf. Section 6).

magnitude is roughly the same for any other short range binary
interaction potential, such as the Lennard—Jones potential. Note
that the length unit is the sphere diameter d, a scale unit used
throughout the paper. As can be seen from Fig. 1, the kinematic
viscosity goes through a minimum at a pumber density of about
0.3 which corresponds to a relatively dense Enskog gas (in this
case the particles occupy about 15% of the volume of the
system). Since the Reynolds number is inversely proportional
to the kinematic viscosity, the best strategy in simulating high
Reynolds number flows is to choose a number density close to
0.3, which is far beyond the validity of the Boltzmann equation.
As a matter of fact, the Boltzmann equation holds only for
number densities smaller than 6 X 1073, in which case the
corresponding kinematic viscosity is more than 30 times larger
than this minimum value [10]. Note that the number density
for air is 1.33 X 1073 at standard atmospheric conditions,

This last problem is a serious handicap that clearly limits the
usefulness of the DSMC method in simulating high Reynolds
number flows, unless one can find a way to modify the values
of the transport coefficients. In other words, the question arises:
is it possible to set up an algorithm allowing the simulation a
fuid with adjustable transport coefficients, while remaining
strictly within the Boltzmann limir? The main purpose of this
paper is to show that, indeed, such an algorithm can be con-
structed.

At this stage one could ask whether it is not worth simplifying
the microscopic dynamics even further and consider, for exam-
ple, the lattice gas cellular automata (LGCA) or the lattice
Boltzmann (LB) method, that, indeed, allow the simulation of
relatively high Reynolds number flows [11] and other instabili-
ties [12, 13]. The answer depends on the type of questions one
wants to clarify through microscopic simulations. Our main
interest is to use microscopic simulations as an ‘‘experimental’™
tool to check the validity of theoretical approaches or to account
for cases where high-precision laboratory experiments are dif-
ficult or impossible to perform. To this end, we need a method
whose validity goes beyond that of macroscopic hydrodynam-
ics, and which is also able to reproduce the correct fluctuation

spectrum. This last requirement is crucial, since most of the
existing theories about turbulence are essentially statistical the-
ories [14]1. So far it is not clear whether the LGCA or the
LB method contains more information than the macroscopic
Navier—Stokes equations [13).

The Bird algorithm, on the other hand, fully satisfies all the
above requirements: it agrees with all the experimental data
concerning rarefied gas dynamics, including peculiar situations
where hydrodynamics fail; it is in perfect agreement with Lan-
dau-Lifshitz fuctuating hydrodynamics, even in extreme non-
equilibrium conditions [16]; it reproduces correctly the data
obtained through hard-sphere molecular dynamics in strong
shock wave conditions (Mach number >100), a domain far
beyond the validity of Navier—Stokes equations [17].

The paper is organized as follows. In Section 2 we outline
the basic elements of the standard DSMC method and present
the main ideas at the basis of our enhanced-relaxation variant.
To check the validity of this new algorithm, we consider three
different computer experiments. The first, Poiseuille flow,
allows a direct measurement of the kinematic viscosity through
the velocity profile; it is described in Section 3. In Section 4,
we study the statistical properties of an equilibrium system by
measuring the dynamic structure factor. The latter is compared
with its theoretical expression, obtained using the Landau-
Lifshitz fluctuating hydrodynamics [18}. In order to check the
validity of the enhanced-relaxation algorithm in the presence
of hydrodynamic instabilities, Section 5 discusses the Bénard
problem and the comparison with results obtained using macro-
scopic hydrodynamics. In Section 6 we estimate the relative
computational efficiency of the enhanced-relaxation Bird algo-
rithm versus molecular dynamics. Concluding remarks and per-
spectives are presented in Section 7.

2. ENHANCED-RELAXATION BIRD ALGORITHM

Seme 20 years ago, G. A. Bird proposed his now famous
DSMC algorithm to simulate the Boltzmann equation. The
origina! purpose of the method was to deal with problems where
the use of the standard hydrodynamic descriptions, such as the
Navier—Stokes equations, becomes questionable. A common
application of the method is the computation of high Knudsen
number flows of a rarefied gas past an object {(e.g., high altitude
flight}. Bird’s method has become popular since it is in excellent
agreement with experimental and numerical data.

The algorithm we shall discuss is based on the traditional
DSMC [10], whose basic steps can be summarized as follows:
As with nsual molecular dynamic methods, the state of the
system 18 the set of particle positions and velocities, {r;, v},
1 =1, .., N, where N is the total number of particles. The
evolution of the system is integrated in time steps A, typically
a fraction of the mean collision time for a particle. Within a
time step, the free flight motion and the particle interactions
{collisions) are assumed to be decoupled. The free flight motion
for each particle / is computed as r,(t + Af) = rt) + vi()
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At, along with the appropriate boundary conditions. After all
the particles have been moved, they are sorted into spatial cells,
typically a fraction of a mean free path, A, in length. Each cell
is assumed to be perfectly homogeneous, i.e., all particles within
a cell are considered to be candidate collision partners, regard-
less of their exact positions. This major hypothesis allows one to
consider, during the time step At, a *“homogeneous’” Boltzmann
equation within each cell.

The theory underlying the simulation of the homogeneous
Boltzmann equation was first proposed by Kac [19] who as-
sumed that the collisional process can be described as a *‘jump
Markov process.”” With this hypothesis, the probability of the
collision for a pair of hard-sphere particles is directly propor-
tional to the modulus of their relative speed and the waiting
times between collisions are exponentially distributed. The
computational cost of evaluating waiting times increases very
rapidly with the number of particles, so that Bird proposed an
interesting alternative. It consists of evaluating these waiting
times by dividing an estimate of the average distance of collid-
ing particles by the modulus of their refative speed.

A set of representative collisions, for the time step Ay, is
chosen in each cell. For each selected pair a random impact
parameter is generated and the collision is performed. Note that
linear momentum and energy are conserved in the evaluation of
the collision, whereas the angular momentum is only conserved
on average. After the collision process has been completed in
all the cells, the particles are moved according to their updated
velocities and the procedure is repeated as before.

The resulting velocity distribution function obeys a Boltz-
mann-like equation [20]

(9, + v-V)flv, r, 1) = B(ff"), H

where B represents a “‘model”” collision operator. Since the
free flight motions of the particles are computed exactly, the
left-hand side of (1) is exact. As a consequence, the non-
dissipative parts of the resulting hydrodynamic equations are
also exact. The nature of the dissipative terms, on the other
hand, depends directly on the way the collision processes are
modeled. Since B conserves energy and linear momentum, these
dissipative parts are necessarily in the form of the divergence
of a dissipative flux. Therefore, no matter how B is modeled, the
general structure. of the hydrodynamic equations is preserved.
Remarkably, the Bird algorithm also gives the correct transport
coefficients, as predicted by Chapman--Enskog theory [21] and
the correct fluctuation spectrum, as given by Landau-Lifshitz
fluctuating hydrodynamics.

Suppose now that we modify B, while preserving its conser-
vation properties. The resulting hydrodynamics will still be
correct, except for the fact that the transport coefficients will
no longer agree with their Boltzmann expressions. We shall
take advantage of this in the following way.

The values of the transport coefficients in dilute gases are
directly related to the balance between two processes: collisions

and free flights. During the collision step, the velocity distribu-
tion approaches locally a Maxwellian distribution. The free
flight motions of the particles, on the other hand, destroy this
local Maxwellian. These conflicting processes determine the
“relaxation time’" 1 of the system. The viscosity of the fiuid
is directly proportional to this relaxation time as

v == 7kT, (2)

where kg and T are Boltzmann’s constant and temperature,
respectively; the thermal diffusivity coefficient obeys a similar
relation. Note that in dilute gases, the relaxation time is alsc a
function of the local temperature.

Now suppose that we increase the time step used for the
collisions by a scaling factor S., while keeping it unchanged
for the free flight step. The iocal velocity distribution function
will then be S, times *‘closer” to its local equilibrinm value
and, in turn, the resulting relaxation time and transport coeffi-
cients will also be S, times smaller than their Boltzmann values.
Of course, the effective time step allowed for the collisions (S,
Ar) cannot exceed the mean collision time per particle, since
otherwise a given particle will experience, on average, more
than one collision per time step. To be consistent, we must
therefore choose an integration time step S, times smaller than
its normal value, which in turn increases the CPU time of the
program by a similar amount. Moreover, since the mean free
path A is proportional to the relaxation time, decreasing the
latter is equivalent to decreasing the former. In other words,
we need more accurate spatial resolution, which can be achieved
by dividing the Jength of the cells by S.; that in turn requires
more memory space for the program. These are the prices to
be paid for this algorithm to be meaningful. Nevertheless, the
“‘enhanced-relaxation’” Bird algorithm still remains much
faster than MD in comparable situations, as will be shown in
Section 6.

Very recently, Bird proposed several modifications to DSMC
that improve the performance and the flexibility of his original
algorithm [22]. In particular, the new DSMC contains a parame-
ter that allows one to set the “‘effective number of molecules’”
represented by each particle in the simulation. Increasing this
number also decreases the transport coefficients so that, as far
as macroscopic behavior of the fluid is concerned, this achieves
straightforwardly the same goal as our algorithm, The use of
an effective number for particles does not, however, preserve
the statistical properties of the simulated fluids. For instance,
let N be the number of particles inside a volume AV, Tt is well

"known that at thermedynamic equilibrium, the distribution of

N is Poissonian so that mean square deviation of ¥ is simply
equal to its average value, i.e., (8N?) = (V). If now we vse the
concept of “‘effective number’” and say that each simulated
particle represents M real atoms, then {(§(M N)?) = MXN),
whereas the correct mean square deviation is M (N). The main
reason for this apparent discrepancy is related to the fact that
fluctuations of extensive quantities, such as energy or number
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of particles, do not scale as N but, as N'?, at least for near
equilibrium fluids. As the fluid is driven through an instability,
the scaling law of fluctuations changes and one of our main
goals in the future is precisely to study the behavior of fluctua-
tions in turbulent regimes through particle simulation. The algo-
rithm we present simply enhances the relaxation toward local
equilibrium without changing the fluid density and, hopefully,
it will preserve the statistical properties of the fluid.

To sum up, we consider the traditional DSMC method, where
we introduce a new parameter S,. The duration of each collision
is then simply reduced by S;. As a result, the program performs,
on average, S, times more collisions than it would in normal
DSMC method. Since the free-flight processes are unchanged,
we have to consider S, times more collisional cells in each
spatial direction and reduce the integration time step by the
same amount. Everything else remains exactly the same as in
the usual DSMC.

The theoretical arguments to justify the validity of the en-
hanced-relaxation Bird algorithm, although highly plausible,
are nevertheless heuristic and need to be carefully tested. Spe-
cifically, we should check whether the equilibrium properties
(e.g., equation of state, the speed of sound), the hydrodynamics
and the fluctuation spectrum are correctly preserved in this new
algorithm. The next three sections present a series of computer
experiments which test the DSMC algorithm and its enhanced-
relaxation variant for hard-sphere fiuids. For practical conve-
nience, lengths and masses are scaled by the sphere diameter
d and the particle mass m, respectively, i.e., wetake d = m =
1. Similarly, by an appropriate scaling of time and velocities,
the equilibrium (reservoir) temperature and thermal velocity
are set to unity. In these units, the Boltzmann constant is equal
to 0.5. In all cases, the global number density (total number of
particles divided by the volume of the system) will be set equal
to 5.34 X 107, which corresponds to 400 particles per cubic
mean free path, when S, = 1.

3. POISEUVILLE FLOW

We start with the microscopic simulation of plane Poiseuille
flow, also known as channel flow. Consider an assembly of N
particles confined between two rigid, parallel plates located at
y = 0and y = L. These plates are stationary and act as infinite
thermal reservoirs, 1.e., each time a particle strikes one of them,
it is re-injected into the system after having its velocity reset
according to a half-Maxwellian distribution at the reservoir
temperature T = 1. Periodic boundary conditions are assumed
in the other two directions and a constant acceleration field, g,
oriented in the x direction is applied to the system.

Assuming the flow is laminar, at the stationary state the x-
component of the velocity field is a parabolic function of the
y-coordinate:

g
= =y —_ +
v 2yy(L ¥l +ul,, (3)

where 1, is the unit vector in the x direction and u, represents
the velocity slip at the walls. From the average velocity profile,
one can directly measure the kinematic viscosity, #.

It should be noted that in deriving (3) we have assumed that
¥ is constant. For a Boltzmann hard-sphere gas, however, the
viscosity coefficient is proportional to VT. Assuming constant
pressure, the density is inversely proportional to 7. As a
result, vis inversely proportional to /T and, because of energy
dissipation, the temperature is not uniform throughout the sys-
tem (viscous heating). In fact, neglecting the temperature depen-
dence of v and thermal diffusivity coefficient A, the tempera-
ture profile is given by

e & (EY (LY
T‘T“lzcuwxr[(z) (2 y)] @

where ¢, is the heat capacity at constant volume. In principle,
this expression can be used to measure directly the thermal
diffusivity coefficient as well, as it has been done for dense
fluids [23]. For dilute gases, however, this procedure is quite
difficult to set up, mainly because the amplitude of T(y), as
compared to the reservoir temperature, is generally quite small
(it is proportional to the square of the velocity gradient). To
get reasonable statistical accuracy (signal to noise ratio), one
has to consider a relatively large value of the acceleration field
g, but then the temperature dependence of transport coefficients
can no longer be negiected. There are also other problems,
mainly related to the temperature jump and noise at the bound-
aries, so that in this section we will concentrate on the kine-
matic viscosity.

For the simulation we use N = 2000 particles and 40 colli-
sional cells in the y direction with L = 421.56 d (=10 mean-
free paths). We first consider the standard DSMC, ie., S, =
1, and take g = 1.2 X 107% With this choice of parameters,
the variation in the temperature profile does not exceed 0.2%
so that the temperature dependence of transport coefficients
can indeed be neglected. The system is also divided into 20
statistical cells in y direction, In these cells, a space averaging
1s performed to give instantancous values of the conserved
mechanical quantities: mass, momentum, and energy density.
A time averaging then leads to the local macroscopic quantities,
such as temperature, velocity, etc. The total run executed about
10¢ collisions per particle (CPP). The statistical errors, estimated
over successive intervals of 10° CPP, do not exceed 0.8%. The
theoretical value of the kinematic viscosity for the above set
of parameters is 23.35; the measured value is found to be
23.3 = 0.1, in excellent agreement with the theory.

To test our enhanced-relaxation algorithm, we next consider
the same simulation, but with S, = 10. The expected kinematic
viscosity should now be 10 times smaller than its Chapman—
Enskog value. The system is divided into 400 collisional cells
(5 particles per cell) and 40 statistical cells. The best way to
test the theory is to choose an acceleration field g = 1.2 X
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FIG. 2. Measured velocity profiles. The solid line represents the results
obtained using the standard Bird algorithm (S, = 1), with g = 5 X 107,

whereas the dots correspond o the enhanced-relaxation algonithm (S, = 10)
with g = 5 X 107* In each case, the velocity slip has been removed,

107% (10 times smaller than its previous value), since then the
velocity profile should remain unchanged (see Eq. (3)).

Our first observation concerns the velocity slip at the bound-
aries. According to elementary kinetic theory, one has [24]:

i, = Qc/\(avxla_y)wall (5)

where C is a numerical constant whose value is about (.491.
Since transport coefficients are proportional to the mean free
path, A, we expect a velocity slip 10 times smaller than in the
previous (normal) case; this is precisely what is observed.

Next, we consider the velocity profiles shown in Fig. 2, In
each case, the velocily slip has been removed. As can be seen,
there is very good agreement between the two results, although
the statistical errors are larger for S, = 10 than for §, = 1. As
we already mentioned, to get the same statistical accuracy, the
total running time of the program must be 10 times larger for
the former than for the latter case. Here, however, we have
chosen the same total computation time for both simulations
(10° CPP). As a result, the estimated statistical error is about
3% for . = 10.

These results clearly show that the enhanced-relaxation algo-
rithm accurately reduces the kinematic viscosity by a factor of
1/S,.. Next, we show that the thermodynamic properties and
the fluctuation spectrum of the fluid are preserved as well in
the simulations.

4. DYNAMIC STRUCTURE FACTOR

In this section we study the statistical properties of equilib-
rium systems. Specifically, we measure the density fluctuations
in the fluid. These spontaneous fluctuations generate tempera-
ture (or entropy) fluctuations and pressure fluctuations. While
the former dissipate slowly in time through heat modes, the
latter give rise to sound waves which propagate rapidly through-
out the system and eventually are damped through viscous
modes. The study of density fluctuations yields important infor-

mation about both the thermodynamic properties (equation of
state, speed of sound, etc.) and the transport properties of the
fluid.

For the simulations, we consider an assembly of ¥ = 3000
hard spheres in a box with dimensions L, = 1264.7 d (=30 A)
and L, = L, = 21.1 d (= 0.5 A); periodic boundary conditions
are used in all directions. The system is partitioned in the x
direction into 60 collisional cells (which are also used as statisti-
cal cells). Afier the fluid has relaxed to equilibrium, statistics
are taken over 10° CPP to measure the Fourier transform of
Van Hove total correlation function, defined as [21]:

Fyt) = (”q(t)n—q(o» - an>F’ (6)

where ng is the Fourier transform of the number density:

1
nat) = = 2 expliq - TINL(). (7

Here, N (1) represents the instantaneous number of particles
in the statistical cell “‘o”” and r, is the position of that cell.
Note that for q # 0, the second term on the right-hand side of
(6) is zero, if the average density profile is uniform in space
and, therefore, it is generally omitted.

To improve the statistics, we set g, = g, = 0; that is, we
restrict ourselves to the study of “‘reduced’” variables defined
as the spatial average over the y and z directions. Since the
system is finite, the wave vector ¢ can only take discrete values:

d=ql: q.=—k k=12 .. (8)

In hydrodynamic regime the function Fi{1), as defined in Eq.
(6) but with the restriction (8), is related to the time correlation
of density fluctuations in the fluid through

IAACE BRI
F*@—ﬁ(;)r;fndxﬁ,dx-

exp {i % k(x — x’)} {8p(x, Np(x’, O)),

9

where 8p is the (mass) density fluctuation. The small size of
the system, constrains us to small values of &, since we wish
to remain in the hydrodynamic regime (typically, £ = 1 or 2).

We first consider the standard DSMC,; that is to say, we take
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F1G. 3. Scattering function versus frequency for kK = 1 measured in the
Bird simulation using 5, = 1.

§. = 1. Figure 3 shows the measured dynamic structure factor
Siw), also called the scattering function, defined as the time-
Fourier transform of Fi(t):

Siw) = J_w dr expliort Fi(1). (10)

The statistical error, estimated from successive runs of 10° CPP,
does not exceed 8%, except for @ = 0 (the long-time limit of
F\(1)), where it exceeds 20%. The theoretical expression of
S;(w), as obtained from the Landau-Lifshitz Auctuating hydro-
dynamics [25], is also shown in the same figure. The peak near
the origin is known as the Rayleigh line. Its width is directly
proportional to the heat diffusivity coefficient. The second peak,
known as the Brillouin line, is centered around @ = C,27k/
L., where C, is the sound speed (here, k = | and C, = 0.913
in system units). The width of the Brillouin line is directly
proportional to the kinematic viscosity. The total area under
Siw) allows one to estimate the compressibility coefficient of
the fluid. The ratio of the area under the Brillouin peak and
Rayleigh peak is equal to ¢,/c, — |, where ¢, represents the
heat capacity at constant pressure. The very good agreement
between the data and theory shows once more the accuracy of
the DSMC method.

We next consider the enhanced-relaxation algorithm. Setting
S, = 10, we expect the transport coefficients to be lowered by
an order of magnitude. The other parameters are as before,
except that now we divided the systemn into 600 collisional
cells in the x direction and use 300 cells to collect statistics,
The program was run for 5 X 10° CPP (five times longer than
in the previous case). In Figs. 4 and 5 we present the measured
and theoretical scattering functions fork = 1 and k = 2, respec-
tively. The estimated statistical errors are about 12% for k =
1 and 15% for k = 2. The parameters used in the evaluation
of the theoretical scattering function are the same as in Fig. 3,
except that the transport coefficients are divided by S, = 10.

As can be seen, the agreement is very good, much better
than the expected statistical errors. For instance, the measured
speed of sound is 0.913 for £k = | and 0912 for k = 2, in

18-S {(m)
8115k
135
0.9+
0.45 -
] 3
] . . ©x10
-
0 1 2 3 4 5 6
FIG. 4. Scattering function versus frequency for k = | measured in the
Bird simulation using S, = 10.

excellent agreement with its theoretical value. The line shapes
of the spectrum are also in very good agreement, showing that
indeed all the thermodynamic and transport properties of the
system are preserved by the enhanced-relaxation Bird algo-
rithm. We have also measured the local velocity and tempera-
ture fluctuations and observed that the discrepancy with their
theoretical values never exceed 5%.

In view of these results, there is no doubt that the enhanced-
relaxation algorithm works perfectly in equilibrium and near
equilibrium situations. As a final test, we next consider a far
from equilibrium situations in the presence of a hydrodynamical
instability, namely the Rayleigh—Bénard problem.

5. RAYLEIGH-BENARD INSTABILITY

In a fluid heated from below, the cold upper layers are heavier
than the thermally expanded lower layers. This potentially un-
stable situation remains stable for small temperature gradients
due to the dissipative effects of heat conduction and viscosity.
However, above a critical value of the temperature gradient,
the purely conductive state becomes unstable and a transition
to well-structured convective behavior occurs. This transition,
known as the Rayleigh—Bénard instability [26], is governed by
the Rayleigh number K,, defined as

Sk( )
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FIG. 5. Scattering function versus frequency for k = 2 measured in the
Bird simulation using S, = 10.
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where L. is the distance between the horizontal plates, g the 01
gravitational acceleration, and a = —(1/p)(dp/dT),, the ther- '
mal expansion coefficient. The temperature difference, AT = 0
T, — Ty, is the difference between the lower (77} and upper -0.1
(Tu) plate temperatures. For stress-free boundary conditions, 0.9
the critical value of the Rayleigh number is about 750, e
For the simulation, we consider essentially a two-dimen- 03— 4
‘ : ' y 0 94 188 282 376

sional system by setting L,, L, L.. The fluid is subjected to an
adverse external gravitational acceleration, g, in the z direction.
Non-equilibrium constraints are imposed by stochastic hori-
zontal walls which act as thermal reservoirs: each time a particle
strikes the upper (lower) horizontal wall, it is re-injected into
the system, conserving its tangential velocity component, while
having its normal velocity component sampled from an equilib-
rium distribution at the upper {lower) wall temperature. This
thermalisation mechanism simulates optimally stress-free
boundary conditions [6]. The vertical sides are modeled as
specularly reflecting walls. Macroscopically, this means insulat-
ing stress-free boundary conditions.

Microscopic simulations model extremely small systems.
Since R, is proportional to L2, in order to overcome the instabil-
ity threshold one has to apply an extraordinarily large tempera-
ture gradient and gravitational acceleration. These constraints,
however, cannot be chosen arbitrarily large. For instance, if
the gravity is excessively sirong, the upper half of the system
will be nearly empty. Furthermore, particle simulations become
inefficient when the density gradient is large. One way to ensure
a nearly uniform spatial distribution of particles, is to set

:z(a_p AT
E=o\or), L,

We use this condition to fix the acceleration in all our simula-
tions.

Finaily, the temperature variation over a mean free path must
be small if one is to remain within the hydrodynamic regime.
In any case,

(12)

ATTS 2, (13
T

where T = (T, + Ty)/2 is the average temperature. In practice,
because of the temperature jump at the horizontal walls, the
effective value of AT/T is typically below 1.8. Note that this
temperature jump is larger than it would be if both velocity
components were thermalised [S5] (corresponding to stick
boundary conditions). But in this latter case the critical value
of the Rayleigh number is more than two times larger than in
the case of stress-free boundary conditions.

For the simulations we use N = 40,000 particles. The wall

FIG. 6. Velocity profile of the horizontal velocity at (x = L,/2) versus g
for Rayleigh—Bénard convection. Solid circles are from Bird simulation with
8. = 10; solid line represents the solution of hydrodynamic equations.

temperatures are set to T, = [.5 and 7;; = 0.5, and the system
size to L, = 42,156 d (=1 A), L, = L, = 421.56 d (=10 A}).
For §. = 1 (standard DSMC), one is below the convection
threshold since the Rayleigh number is only 63.2. We use
S. = 10, so the Rayleigh number is about 6520, well above its
critical value.

The system is divided into 200 X 200 collisional cells (giving
an average of one particle per cell). A space average is per-
formed over 40 X 40 statistical cells to collect instantaneous
values of basic mechanical quantities. After a short transient
time of about 1000 collisions per particle (CPP), the system
evolves to a single convective roll that remains stable for the
rest of the run (210,000 CPP). After a relaxation period of
10,000 CPP, statistics are taken over 10 sequences of 20,000
CPP. This procedure allows an estimation of statistical errors;
measured velocities and temperature are accurate to about 8%.

To verify our results, we compare them with those obtained
from the Navier--Stokes equations. Because of the complexity
of this probiem (non-Boussinesq fluid, state dependent transport
coefficients, mixed boundary conditions, etc.) we solve the
full macroscopic hydrodynamic equations numerically using
standard techniques [7]. For the equation of state we use the
ideal gas law and for the transport coefficients we use the
Chapman—Enskog expressions. To properly include the Knud-
sen layer (i.e., the temperature jump) into the hydrodynamic
equations, we extrapolate the temperature profile measured in
the simulation to obtain the *‘corrected’” wall temperature. The
extrapolated lower and upper wall temperatures are found to
be 1.456 and 0.568 (as compared with 1.5 and 0.5).

Figures 6 and 7 illustrate the x-component of the velocity
profile versus z and x, respectively. The convective velocity
profiles measured in the enhanced-relaxation Bird simulation
are in excellent agreement with hydrodynamic theory. The re-
sulting temperature profile is shown in Fig. 8. As can be seen,
there is good agreement near the hot wall, whereas a small
discrepancy is observed near the cool wall (top layer). Given
the significant temperature jump at the top layer (11%), this
discrepancy had to be expected. The deviations, however, never
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FIG. 7. Velocity profile of the horizontal velocity at {z = L,/2) versus x
for Rayleigh—Bénard convection. Solid circles are from Bird simulation with
§. = 10; solid line represents the solution of hydredynamic equations.

exceed 3%, which is well within the expected statistical er-
rors (8%).

6. COMPUTATIONAL EFFICIENCY

The analysis of the previous sections has shown that the
enhanced-relaxation variant of the DSMC is in quantitative
agreement with equilibrium statistical mechanics and non-
equilibrium hydrodynamics. One important question remains:
What are the advantages of vsing this new algorithm for the
study of hydrodynamic instabilities, as compared with other
computational methods? As was already discussed in the Intro-
duction, we are mainly interested in studying statistical proper-
ties of the fiuid, so we only consider methods which preserve
the correct fluctuation spectrum. For this reason, we exclude
from this discussion continuum methods, such as Navier—
Stokes solvers, and lattice Boltzmann models. Instead, we com-
pare the efficiency of the enhanced-relaxation DSMC with a
hard disk molecular dynamics simulation, in terms of CPU time.

As a specific example, we consider the problem studied
in the previous section, a two-dimensional Rayleigh—Bénard
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temperature jump, especially at the lower wall.
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instability at a prescribed Rayleigh number. Once we fix the
temperature difference and use the relation (12) to set the accel-
eration field g, then the only remaining free parameter is the
number density.

It is well known that for hard disk fluids the transport coeffi-
cients, that appear in the denominator of the Rayleigh number
(11), depend significantly on the number density [27]. This is
also the case for the thermal expansion coefficient [28]. A
detailed analysis |[7] shows that the Rayleigh number has a
rather pronounced maximum for values of number density rang-
ing between 0.1 and 0.4 (in system units). For hard disk dynam-
ics, the number density has to be chosen in this range, say 0.2.
On the other hand, for the Boltzmann simulation the gas must
remain dilute so that the number density cannot exceed 6 X
1073, as discussed in the Introduction. We will take the number
density to be 5.34 X 1073, that is, the value already used in
previous sections.

The CPU time of a simulation is directly related to the
characteristic time scale for the relaxation processes of hydrody-
namical modes. One may consider, for example, the thermal
diffusion time 74 = L2/2A; which represents the time needed
for a heat mode to cross the system. During this time, the
number of collisions in a system made up of N hard disks is [29]

ZHD - —ﬁNHD'TdiffX W TTkBT, (14)
where 77 is the global number density and y is the pair correlation
function at contact [27]. Clearly, the CPU time of a hard disk
molecular dynamics simulation will be proportional to Z,p.

For the purpose of comparison, it is useful to write Zyy, in
terms of the Rayleigh number. Using the relation (12), and the
thermodynamic relation

T (3p/aT);
L= —¢, 15
7 Gplapy, 7 ° (1)
the Rayleigh number may be written as
cp— C, ATEL
Riy=—F7"——. (16)

T VAT

Noting that for hard disk systems the total number of particles
is related to the number density through Nyp = L2 (recall that
L. = L,), using the explicit form of the equation of state and
transport coefficients [27, 28] and taking T = AT = |, one
finally obtains

ZHD =1.02 R‘é
Nyp = 2.62 R,, =26V AT

(17a)
(17b)

Proceeding along the same lines, one may estimate the CPU
time for a DSMC simulation. The number of collisions in a
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dilute hard-sphere system during a thermal relaxation time, 7y,
is Zg = 2n Ny T VirksT. The total number of particles, Ny,
and the number density, are related through Ny = L.L%. The
simulation is three-dimensional but very shallow in the v direc-
tion (i.e., L, <€ L,, L)). However, due to the homogeneity
assumption made in the construction of the collisional algo-
rithm, L, cannot be made arbitrarily small. It is well known
that the accuracy of the DSMC method is directly related to
the average number of particles contained in collisional cells.
In general, this number should not be less than 20, since other-
wise the local thermalization becomes inefficient and the algo-
rithm gives incorrect transport coefficients [10].

As was already mentioned, the linear dimension of collisional
cells must be a fraction of a mean-free path A. A good choice
is to set this linear dimension to half a mean-free path, in which
case, using 20 particles per cell, the total number of particles is

Ly
Ne =20 (—m) . (18)
Note that this relation fixes the value of L,.

Using the explicit form of the transport coefficients for a
dilute gas, one finds

Z
=238 (192)
ZHD
Np
EALRSTY 19b
Moo (19b)

The relation (19a) shows that the hard-disk simulation re-
quires about 40 times fewer collisions than DSMC per relax-
ation period. It is generally accepted that, per collision, DSMC
runs about three orders of magnitude faster than molecular
dynamics. Thus, it simulates Rayleigh—Bénard convection
nearly two orders of magnitude faster than the corresponding
hard-disk dynamics. However, one needs about 50 times
more particles.

Let us now consider our enhanced-relaxation variant of
DSMC. As we increase the parameter §, we find that fewer
and fewer particles are needed per collisional cell. Surprisingly,
we found that for two- or three-dimensional flows, the simula-
tion gives accurate results with one particle per collisional
cell when S, > 8. This result was demonstrated in the two-
dimensicnal Rayleigh~Bénard simulations presented in the pre-
vious section. For one-dimensional flows, however, we observe
that the required minimum number of particles per collisional
cell is larger (approximately five for the simulations described
in Sections 3 and 4).

Since the “‘effective’ mean-free path is now A/S., the total
number of particle Ny for the enhanced-relaxation Bird algo-
rithm is related to L_ through
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L\
NERB=S£( '>; 5. =10. (20)

A2
Using this result, one easily finds that

ZERB
ZHD

3 S% (21a)
Nerp

=24,
NHD

(21b)

Since we take §. = 10, we see that the enhanced-relaxation
DSMC requires fewer collisions than the corresponding hard
disk dynamics. But, as discussed in Section 2, the algorithm
requires S, times more CPU per time step than the traditional
Bird algorithm. Taking this into account, we still find that
the enhanced-relaxation DSMC runs aimost three orders of
magnitude faster than the corresponding hard disk dynamics
yet requires only 2.4 times as many particles!

These impressive results fully justify the use of the enhanced-
relaxation DSMC for the study of two-dimensional high Ray-
leigh number flows. The situation is, however, less promising
for high Reynolds number flows. Since, in general, we are
interested in strictly sub-sonic flows, the Reynolds number is
limited by

C.L,
Re :_'_-",
14

(22)

where C, and L, are the sound speed and the characteristic
length scale, respectively. The sound speed is an increasing
function of the density, so that for fixed L, the Reynolds number
is maximum for 7 = (.78. On the other hand, the maximum
performance for hard-disk dynamics is obtained when the num-
ber of collisions during the hydrodynamic relaxation time is
minimum. For Poiseuille flow, the relaxation time may be taken
as the viscous time 7, = LY/2v. For a given prescribed Reynolds
number, proceeding as for the Rayleigh—Bénard case, one easily
finds that the number of collisions during the relaxation time is

_ Retvnly V TkgT

o= 23)

Figure 9 shows Zy; as a function of the number density. As
can be seen the optimal performance for hard-disk dynamics
is obtained for ¢ = 0.48. For this density, the sound speed is
about 2.5 times larger than in a dilute gas.

Repeating the above calculation for DSMC, we find that it
uses about the same CPU time as hard-disk dynamics, yet
requires over 400 times more particles, which in turn may
become a serious handicap in simulating large Reynolds number
flows, The enhanced-relaxation DSMC, on the other hand, runs
nearly two orders of magnitude faster and requires about 20
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FIG. 9. Total number of collisions per relaxation time as a function of
number density for a hard disk molecular dynamics simulation.

times more particles. While the overall performance of the
enhanced-relaxation DSMC is not as good as in the Rayleigh—
Bénard case, it is still largely competitive with hard-disk dy-
namics.

Note, finally, that in this section the discussion has been
concentrated on two-dimensional systems. In principle, one
might expect better performances for the enhanced-relaxation
DSMC in three-dimensional cases, since now N = L¥n. In
practice, however, we are limited by the fact that one needs at
least one particle, on average, per collisional cell, as we increase
the parameter S,. Explicit calculations, along the same lines as
those presented for two-dimensional systems, indicate that the
relative performance of the enhanced-relaxation DSMC re-
mains roughly the same for three-dimensional systems, as com-
pared with hard-sphere dynamics.

7. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a simple extension of the
DSMC method for the simulation of dilute gases. By enhancing
the collisional relaxation processes, we were able to signifi-
cantly reduce the transport coefficients. We established a series
of computer experiments which showed that the equilibrium
statistical mechanical properties and the hydrodynamic proper-
ties of the fluid are correctly reproduced. Furthermore, the
computational efficiency of the enhanced-relaxation DSMC
was compared with hard-disk dynamics for complex hydrody-
namical flows. Our method is ideally suited for the simulation
of Rayleigh—Bénard convection, since it is about three orders
of magnitude faster than molecular dynamics.

For the simulation of shear-induced instabilities, the relative
gain is about two orders of magnitude in computational speed.
Unfortunately, since the CPU time of the simulation increases
as Re* (see Eq. (23)) [30], we are still limited to flows with
moderate Reynolds number (Re ~ 10* in three-dimensional
flows). We are presently using the enhanced-relaxation DSMC
method to study two-dimensional Kolmogorov flow [31] and
have been able to observe the first few instabilities (Re =~ 200)
using modest computational resources (RISC workstations).
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At this point one may ask ‘‘Are there other modifications to
the Bird algorithm which would allow us to reach higher Reyn-
olds number?’” There are various ways to increase the Reynolds
number in a simulation: increase the flow velocity, increase
the system size, or decrease the fluid viscosity. Since one is
principally interested in sub-sonic problems, the flow velocity
is limited by the sound speed. Unfortunately, since the DSMC
method is based on the Boltzmann equation, we are restricted
to simulating a dilute gas so the speed of sound is fixed by the
ideal gas law.

One way to increase the system size is to increase the colli-
sional cell size, holding the number of particles fixed. We know
that, as a rule of thumb, collisional cells in the DSMC algorithm
should be a fraction of a mean-free path in size, However,
numerical experiments indicate that cells as large as two mean-
free paths may often give accurate results [32]. One might also
obtain better computational efficiency by using some of the
new DSMC features, like, for example, the “‘cell/sub-cell”
hierarchy [22, 33]. While these techniques might increase the
Reynolds number by one order of magnitude, their applicability
still needs to be established.

A second way to increase system size is to increase the
number of collisional cells, holding their size fixed. This will
decrease the average number of particles per cell since we fix
the total number of particles. The standard DSMC method is
accurate when the number of particles per cell is about 20 or
more. Surprisingly, the enhanced-relaxation method is often
accurate with an average of one particle per collisional cell.
These statements are purely observational and not well under-
stood. We are analyzing the algorithm using the theory of
Markov processes in an attempt to explain these results. Further
study may indicate new ways to modify the collisional algo-
rithm to further reduce the average number of particles per
cell.

Finally, one may increase the Reynolds number by finding
other ways of lowering the transport coefficients. One of the
authors (A.G.} has been experimenting with variants of the
hard-sphere collision rules. Conservation of momentum and
energy fix four of the six variables in the post-collision veloci-
ties. Specifically, the center-of-mass velocity and the magnitude
of the relative velocity are unchanged by the collision. In the
DSMC algorithm, the direction of the relative velocity is chosen
at random; for hard spheres its direction is uniformly distributed
over the unit sphere. An alternative collision rule, called the
X-rule, is to set the pre- and post-collision relative velocities
perpendicular to each other (with the remaining angle uniformly
distributed in [0, 27]). Preliminary computer experiments indi-
cate that this rule can lower viscosity by about 20-30% while
preserving the correct hydrodynamics. Collision rules which
violate detailed balance have also been tested and found to
dramatically reduce the transport coefficients. Unfortunately,
they alse produce unphysical artefacts in the flows [34]. Still,
it may be expected that the various ideas presented in this
section, combined with the enhanced-relaxation DSMC algo-
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rithm, will eventually lead to new ways of efficient simulation
of high Reynolds number flows at the microscopic level.
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